Ultra-fast Microwave Synthesis of ZnO Nanowires and their Dynamic Response Toward Hydrogen Gas

نویسندگان

  • Ahsanulhaq Qurashi
  • N Tabet
  • M Faiz
  • Toshinari Yamzaki
چکیده

Ultra-fast and large-quantity (grams) synthesis of one-dimensional ZnO nanowires has been carried out by a novel microwave-assisted method. High purity Zinc (Zn) metal was used as source material and placed on microwave absorber. The evaporation/oxidation process occurs under exposure to microwave in less than 100 s. Field effect scanning electron microscopy analysis reveals the formation of high aspect-ratio and high density ZnO nanowires with diameter ranging from 70 to 80 nm. Comprehensive structural analysis showed that these ZnO nanowires are single crystal in nature with excellent crystal quality. The gas sensor made of these ZnO nanowires exhibited excellent sensitivity, fast response, and good reproducibility. Furthermore, the method can be extended for the synthesis of other oxide nanowires that will be the building block of future nanoscale devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature

In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...

متن کامل

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Effect of Sorbitol/Oxidizer Ratio on Microwave Assisted Solution Combustion Synthesis of Copper Based Nanocatalyst for Fuel Cell Grade Hydrogen Production

Steam reforming of methanol is one of the promising processes for on-board hydrogen production used in fuel cell applications. Due to the time and energy consuming issues associated with conventional synthesis methods, in this paper a quick, facile, and effective microwave-assisted solution combustion method was applied for fabrication of copper-based nanocatalysts to convert methanol to hydrog...

متن کامل

Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications

In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of...

متن کامل

ZnO Nanowires/Nanobelts Structured CO Gas Sensor

Zinc oxide nanowires/nanobelts thin films were prepared by thermal evaporation deposition of Zn on two different kinds of substrates, namely Cr-glass and Cr-<100> n-type Si. ZnO nanostructured based COgas sensing thin films were formed, and the morphologies of these films were investigated by scanning electron microscopy (SEM). The sensing response of the films toward CO gas at operating temper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009